

Search for a Higgs Boson Decaying to Two W Bosons

Jennifer Pursley, on behalf of the authors

University of Wisconsin-Madison

CDF Weekly Meeting – Paper Seminar

Sept. 18, 2008

PRL Draft: CDF Note 9368

Paper Details

- Supporting Documentation
 - □ Full list on godparent webpage:

http://www-cdf.fnal.gov/internal/physics/godparents/HWW_2fb/

- Main analysis note:
 - For 2.4 fb⁻¹, CDF 9195
 - For update to 3.0 fb⁻¹, CDF 9402
- □ Public note, CDF 9236
- □ PRL Draft, CDF 9368
- □ Also: 9163, 8977, 8958, 8923, 8774, 8719, 8700, 8647, 8538, 8128
- Thanks to godparents
 - □ Rainer Wallny (chair), Craig Group, Oliver Stelzer Chilton
- ... and all who read the drafts, especially:
 - ☐ Fermilab, Pisa, OSU, UC-Davis, SPRG

Authors

The HWW group ⇒

Godparents	Rainer Wallny (chair) Craig Group (literary) Oliver Stelzer Chilton
Conveners	Matthew Herndon Mark Kruse
Physics Coord	Doug Glenzinski
Spokes	Rob Roser Jaco Konigsberg

22 People from 8 institutions!

Duke University						
Dean Andrew Hidas	Valentin Necula					
Doug Benjamin	Mark C. Kruse					
FNAL						
Susan Burke	Sergo Jindariani					
Eric James						
IEP S	Slovakia					
Rom	an Lysak					
INFN	Padova					
Maria D'Errico	Simone Pagan Griso					
Donate	lla Lucchesi					
UCSD						
Shih-Chieh Hsu	Elliot Lipeles					
Frank Wurthwein						
University of Glasgow						
Toby Davies	Aidan Robson					
Stan Thompson	Richard St. Denis					
Peter Bussey						
UIUC						
Mark Neubauer						
Wisconsin						
Jennifer Pursley Matthew Herndon						

Standard Model Higgs Production

Four main production mechanisms

☐ Gluon fusion dominant process at Tevatron

Only process considered in this analysis

 Associated production (ZH, WH) and vector boson fusion contribute to production + jets

Sept. 18, 2008

W

Standard Model Higgs Decay

- Higgs decay modes depend on Higgs mass M_µ:
 - \square M_H < 135, predominantly to bb
 - \square $M_H > 135$, predominantly to W^+W^-

- For gg \rightarrow H \rightarrow WW σ x BR,
 - □ Peak sensitivity at M_□ ~ 160
 - Comparable sensitivity to VH→Vbb at M_□ ~ 130

Analysis History

- PRL on CDF H→WW result in May 2006 with 360 pb⁻¹
 - \square Used dilepton opening angle ($\Delta \phi_n$) to discriminate signal from background
 - $_{\square}$ Expected limit at 160 is 8.5 x $\sigma_{_{\rm SM}}$
- Preliminary result: CDF Note 8774 March 2007
 - □ Extended lepton selection, matrix element method on 1.1 fb⁻¹
 - $_{\square}$ Expected limit at 160 is 4.8 x $\sigma_{_{SM}}$
- Preliminary result: CDF Note 8700 March 2007
 - □ Neural network method on 1.0 fb⁻¹
 - \Box Expected limit at 160 is 4.7 x $\sigma_{\rm SM}$
- Preliminary result: CDF Note 8958 August 2007
 - □ Matrix element method on 1.9 fb⁻¹
 - \Box Expected limit at 160 is 3.1 x $\sigma_{_{\rm SM}}$
- Preliminary result: CDF Note 9236 February 2008
 - ☐ Matrix element + neural network on 2.4 fb⁻¹
 - $_{\square}$ Expected limit at 160 is 2.5 x $\sigma_{_{SM}}$
 - □ For publication: Updated dataset to 3.0 fb⁻¹ \rightarrow 2.2 x σ_{SM} at 160 Sept. 18, 2008

H → WW Signature

- W decay modes:
 - \square Leptonic 33% (e, μ , τ), Hadronic 67%
- Dilepton (e, μ): BR ~ 6%
 - \square Sensitive to $\tau \rightarrow (e, \mu)$
 - □ Small BR, but clean, easy to trigger
- $H \rightarrow WW \rightarrow hh$ signature:
 - \square 2 high p_T leptons (e or μ)
 - \square Missing transverse enegy ($\mathbb{E}_{\scriptscriptstyle T}$)
 - □ WW pair from spin-0 Higgs boson:
 - Leptons tend to point same direction
- #opening angle strongest discriminant
- Use multivariate techniques (ME, NN)

Standard Model Backgrounds

- SM processes create a variety of backgrounds:
 - □ WW Largest background
 - □ Heavy diboson: WZ, ZZ
 - □ tt and single top
 - □ Drell-Yan $(Z \rightarrow l/)$
 - □ W + jets/γ
- All cross sections measured by CDF
 - Discovery analyses: WW, WZ, ZZ, single top
- Must understand backgrounds to set a limit

antiproton

antiproton

Event Selection

- Select dilepton events in 3 fb⁻¹
 - \square Two opposite charge leptons (e or μ)
 - Extended lepton selection:
 - □ TCE, PHX, CMUP, CMX, CMIOCES, CMIOPES, CrkTrk
 - □ Divide into high S/B and low S/B lepton categories
 - $p_T(l_1) > 20, p_T(l_2) > 10 \text{ GeV/c}$
 - □ Dilepton mass M_{\parallel} > 16 GeV/c²
 - □ Special E_T cuts suppress DY with mismeasured leptons/jets:

$$E_{\text{T spec}} > 25 \ (ee, \mu\mu) \text{ or } E_{\text{T spec}} > 15 \ (e\mu), \text{ where}$$

$$\not\!\!\!E_{T \ spec} \equiv \left\{ \begin{array}{ll} \not\!\!\!E_{T} & \text{if } \Delta \varphi(\not\!\!E_{T}, lepton, jet) > \frac{\pi}{2} \\ \not\!\!\!E_{T} \sin(\Delta \varphi(\not\!\!E_{T}, lepton, jet)) & \text{if } \Delta \varphi(\not\!\!E_{T}, lepton, jet) < \frac{\pi}{2} \end{array} \right.$$

 $_{\Box}$ Require less than 2 jets with $|\eta|$ < 2.5 and E $_{_{
m T}}$ > 15 GeV

Event Selection, continued

- Use the following standard triggers
 - □ CENTRAL_ELECTRON_18, MUON_CMUP_18, MUON_CMX_18, MET_PEM
 - One lepton required to confirm trigger
 - Apply appropriate pre-scaling
 - Require candidates to be in appropriate good run list
- Background modeling:
 - □ WW modeled by MC@NLO
 - \square All other bkgs modeled by Pythia or Baur (W γ), except...
 - □ W+jets uses data-driven estimate of fake leptons
 - Select identified leptons (numerator) and "fakeable objects" (denominator) in jet data samples
- Calculate lepton ID efficiencies and scale factors using Z candidates in high $p_{_{\!\!\!\!\!-}}$ e and μ data and MC

- Use control regions to check background modeling
 - □ Drell-Yan region: test lepton SF, triggers, lumi accounting
 - Same sign region: test fake lepton contributions
 - \square Low $\not\!\!E_{\scriptscriptstyle\mathsf{T}}$ significance or low $\not\!\!E_{\scriptscriptstyle\mathsf{T}\,\mathrm{snec}}$: test effects of mismeasured energy
 - ☐ All regions show good data-MC agreement

 $\int C - 20 \, \text{fb}^{-1}$

■ Expected gg → H → WW signal:

TABLE I: Expected Higgs boson yield as a function of m_H $m_H \; (\text{GeV}/c^2)$ 110 120 130 140 150 160 170 180 190 200 Expected Yield 0.5 1.9 4.3 7.0 9.3 11.6 11.0 9.0 6.4 5.1

	$\int \mathcal{L} = 3.0 \text{ fb}$			
\overline{WW}	356	士	49	
WZ	24.9	\pm	3.9	
ZZ	21.8	\pm	3.5	
$tar{t}$	25.5	\pm	5.0	
DY	138	\pm	31	
$W\gamma$	90.5	\pm	24.1	
W+jets	111	\pm	27	
Total background	768	土	91	
Data		779		

- Expected background events:
 - □ Background prediction agrees with observed events HWW 0 or 1 Jets

Matrix Elements

$$P(\vec{x}_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma_{th}(\vec{y})}{d\vec{y}} \; \epsilon(\vec{y}) \; G(\vec{x}_{obs}, \vec{y}) \; d\vec{y}$$

Event probability density, with:

 \vec{x}_{obs} Observed leptons and $\not\!\!E_T$

 \vec{y} True lepton 4-vectors (l, v)

 σ_{th} Leading order theoretical cross-section

 $\varepsilon(\vec{y})$ Efficiency & acceptance

 $G(\vec{x}_{obs}, \vec{y})$ Resolution effects

 $1/\langle \sigma \rangle$ Normalization

- Calculate 5 probabilities:
 - □ HWW, WW, ZZ, Wγ, W+jet
- Construct Likelihood Ratio → (for M_□ = 160, high S/B)

Figure 1a in paper

events / 0.04

Matrix Element + Neural Network

- Use LR and kinematic variables as inputs to neural net:
 - \square All 5 LR + $\Delta \phi_{\parallel}$, ΔR_{\parallel} , m_{\parallel} , $\not\!\!E_T$, $\Delta \phi_{ET,(l,iet)}$, $\not\!\!E_{T,spec}$
 - \square Most important variables are LR_{HWW} , $\Delta R_{//}$, $E_{T \text{ spec}}$
- NeuroBayes NN (cross-checked with TMVA)

□ Input layer with 11 nodes, hidden layer with 12 nodes,

output layer with 1 node

Trained on weighted sample of signal + background events ☐ Trained on weighted sample

- Signal given score of +1, background score of -1
- □ One NN for each Higgs mass
- □ NN template for M $_{\bot}$ = 160 \rightarrow

~10% improvement in sensitivity over ME alone!

- Largest uncertainties from theoretical cross-sections
 - Compare WW Pythia MC to MC@NLO to estimate higher order (NLO acceptance) effects
 - □ PDF uncertainties assessed using 20 CTEQ PDFs
 - □ W+jets: uncertainty on jet being identified as a lepton
 - Different for high and low S/B lepton categories

	Fractional Uncertainty (%)								
	WW	WZ	ZZ	$ t \bar{t}$	DY	$W\gamma$	W+jets	Higgs	
	1.0	1.0	1.0	1.0	20.0	1.0	-	1.0	
Conversions	-	_	_	_	_	20.0	-	-	
NLO Acceptance	6.2	10.0	10.0	10.0	5.0	10.0	-	10.0	
Cross-section	10.0	10.0	10.0	15.0	5.0	10.0	-	10.0	
PDF Uncertainty	1.9	2.7	2.7	2.1	4.1	2.2	_	2.2	
LepId $\pm 1\sigma$	1.5	1.4	1.4	1.4	1.4	1.2	-	1.4	
Trigger Eff	2.2	2.3	2.2	2.1	3.5	7.1	_	3.5	
WW Scale	1.7	_	_	_	_	_	-	-	
DY SF Scale	2.7	2.7	2.7	2.7	2.7	2.7	-	2.7	
Total	12.7	14.9	14.9	18.5	22.1	25.8	28.8/23.4	15.1	

Limit on Higgs Production

- Use MCLimit program from Tom Junk
- Show both ME only and ME+NN limits in paper:

```
TABLE II: Expected and observed limits on \sigma(gg \to H) \times \mathcal{B}(H \to WW^{(*)}) and \sigma(gg \to H) \times \mathcal{B}(H \to WW^{(*)})
WW^{(*)})/\sigma_{\mathrm{SM}}(gg \to H) \times \mathcal{B}_{\mathcal{SM}}(H \to WW^{(*)}) as a function of m_H.
                    m_H~({\rm GeV}/c^2)~~110~~120~~130~~140~~150~~160~~170~~180~~190~~200
                                     Using Matrix Element Only
                    Expected (pb) 3.6 2.6 2.2 1.9 1.5 0.9 0.9 1.1 1.2 1.3
                    Observed (pb) 2.8 1.5 1.1 0.9 0.8 0.7 0.6 0.7 1.0 1.5
                    Expected/SM 63.7 19.6 9.4 6.0 4.3 2.4 2.6 3.8 6.0 8.2
                    Observed/SM 50.3 10.9 4.7 3.0 2.3 1.7 1.8 2.6 5.0 10.3
                                   Using Neural Net Discriminator
                    Expected (pb) 3.0 2.3 1.9 1.7 1.4 0.9 0.8 1.0 1.1 1.2
                    Observed (pb) 2.5 1.7 1.2 1.1 0.9 0.7 0.7 0.7 1.0 1.6
                    Expected/SM 54.0 17.1 8.4 5.4 3.9 2.2 2.4 3.5 5.6 7.7
                    Observed/SM 44.6 13.2 5.3 3.5 2.6 1.7 2.2 2.7 5.5 10.6
```

H → WW Limits in 3 fb⁻¹

Observed limit at $M_H = 160$: 0.7 pb or 1.7 x σ_{SM}

Summary

- First update to CDF limit on H→WW since 360 pb⁻¹
 - $_{\square}$ Expected limit moves from 8.5 to 2.2 x $\sigma_{_{\rm SM}}$
 - Many improvements in between, including
 - Extended lepton acceptance and selection
 - Background modeling
- First use of multivariate techniques in H→WW search
 - □ Both ME and NN described in paper
- Significant contribution to Tevatron Higgs combination
 - □ Leading up to a CDF-only exclusion
- Ready for submission to PRL
 - Thanks again to godparents and reading institutions for helpful comments!